Результаты моделирования в данном случае представлены на рисунке $1, \delta$.

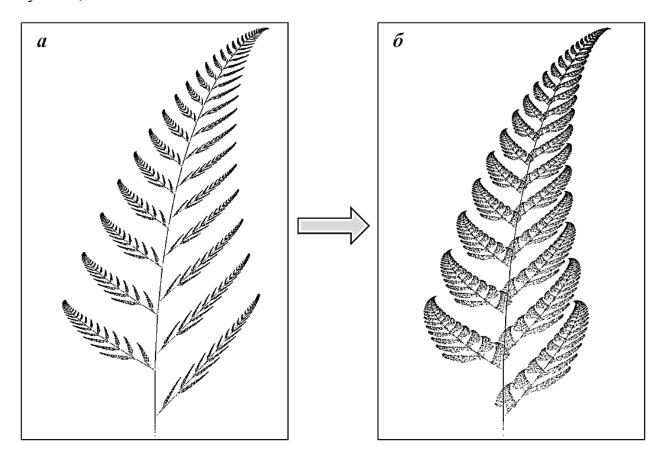


Рисунок 1 — «Классический» (фрагмент a) и «измененный» (фрагмент δ) фрактал «Папоротник Барнсли»

Таким образом, показано, что параметры построения фрактала оказывают существенное влияние на его внешний вид, что может быть использовано, например, для моделирования разнообразных объектов компьютерной графики.

Список использованной литературы

- 1. Поршнев, С. В. Компьютерное моделирование физических процессов в пакете Matlab / С. В. Поршнев. СПб. : Лань, 2011. 736 с.
- 2. Mandelbrot, B. B. Les object fractals : forme, hasard et dimantion / B. B. Mandelbrot. Paris : Flamarion, 2010. 216 p.

МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ТЕЛА В ВЯЗКОЙ СРЕДЕ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ

Невмержицкий Максим, Цырулик Екатерина (УО МГПУ им. И. П. Шамякина, Беларусь)

Научный руководитель – А. В. Макаревич, канд. физ.-мат. наук, доцент

При движении тела в вязкой среде (жидкости или газе) на него действует сила сопротивления, которая в отличие от силы сухого трения скольжения зависит от скорости рассматриваемого объекта [1]. В связи

с этим представляет интерес анализ подобного движения и получение математических выражений для его описания. Для этого рассмотрим падение без начальной скорости объекта, например, сферической формы в жидкости.

При погружении тела массой m в жидкость на него действуют сила тяжести $m\vec{g}$ и сила Архимеда \vec{F}_A (рисунок 1).

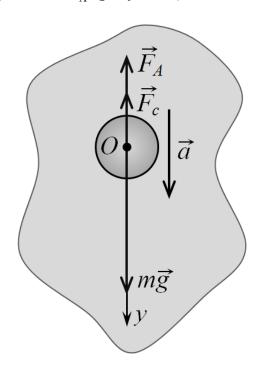


Рисунок 1 – Падение тела сферической формы в жидкости

Если $mg > F_A$, то объект приобретает ускорение \vec{a} , направленное в сторону силы тяжести. По мере увеличения скорости тела на него также начинает действовать сила сопротивления \vec{F}_c , противоположная направлению движения и возрастающая с увеличением его скорости.

При построении математической модели в данном случае обтекание тела потоком набегающей на него среды будем считать ламинарным.

В результате было получено следующее уравнение для описания изменения скорости рассматриваемого объекта с течением времени:

$$\frac{dv}{dt} = g \left(1 - \frac{\rho_0}{\rho} \right) - \frac{9\mu v}{2r^2 \rho} \,. \tag{1}$$

Здесь g — ускорение свободного падения, ρ и r — плотность и радиус тела соответственно, ρ_0 и μ — плотность среды и ее динамическая вязкость соответственно.

В качестве конкретного примера смоделируем падение ртутного шарика радиуса $r=2.57\cdot 10^{-3}~\text{м}$ в глицерине при значениях $g=9.81~\text{м/c}^2$, плотности ртути $\rho=13.55\cdot 10^3~\text{кг/м}^3$, плотности глицерина $\rho=1.26\cdot 10^3~\text{кг/м}^3$ и динамической вязкости глицерина $\mu=1.48~\text{Пa·c}$. Результаты численного решения уравнения (1) представлены на рисунке 2.

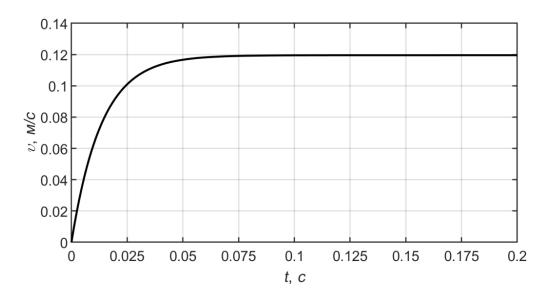


Рисунок 2 – Зависимость скорости ртутного шарика от времени

Из рисунка 2 видно, что скорость тела вначале возрастает, а затем, к моменту времени около $0,1\ c$, выходит на постоянное значение, равное приблизительно $0,12\ m/c$. Анализ представленной на рисунке 2 зависимости v(t) позволяет сделать вывод о том, что скорость моделируемого объекта вблизи момента времени $0,1\ c$ возрастает до значения, при котором сила сопротивления совместно с силой Архимеда начинают компенсировать силу тяжести.

Таким образом, построение подобных компьютерных моделей позволяет более глубоко и наглядно понять динамику изменения сил, действующих на тело, в процессе его движения в вязких средах.

Список использованной литературы

1. Алешкевич, В. А. Механика сплошных сред. Лекции / В. А. Алешкевич, Л. Г. Деденко, В. А. Караваев ; под ред. В. А. Алешкевича. – М. : Изд-во Физического факультета МГУ, 1998.-92 с.

ПОДГОТОВКА ВИДЕОМАТЕРИАЛОВ ДЛЯ ЗАНЯТИЙ ПО РОБОТОТЕХНИКЕ

Павлова Дарья (ФГБОУ ВО ГИПУ, Россия) Научный руководитель – И. Ю. Хлобыстова, канд. пед. наук, доцент

Робототехника является одной из самой перспективных и популярных областей науки и входит в приоритетные направления развития нашего государства. Для изучения робототехники в образовательных учреждениях используются разные методики и технологии работы, в том числе применяются и видеоматериалы на уроках и занятиях.

Применение учебных видеороликов в образовательном процессе делает решение сложных задач увлекательным исследовательским процессом, позволяя усвоить не только знания по изучаемой теме, но и освоить инструмент для изучения любых других тем.