Е. А. ШУТОВА, В. П. ДУБОДЕЛ, А. О. ЛАПАТИН УО МГПУ им. И.П. Шамякина (г. Мозырь, Беларусь)

AKALIA ВЛИЯНИЕ ДИСПЕРСНОСТИ ЧАСТИЦ НАПОЛНИТЕЛЯ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИМЕР МИНЕРАЛЬНЫХ КОМПОЗИТОВ НА ОСНОВЕ ВТОРИЧНЫХ ТЕРМОПЛАСТОВ

Создание полимерных композитов на основе отходов термопластичных полимеров – одно из перспективных направлений в области композиционного материаловедения. Важнейшей задачей при применении вторичных полимеров для получения технически ценных изделий (канализационные люки и колодцы, дождеприемники и др.) является подбор дисперсных наполнителей, влияющих на совместимость в композиционном материале полимерных компонентов, стабильность его структуры и технологических свойств [1].

В результате исследования влияния рецептурно-технологических параметров переработки полимер-минерального композита на его механические свойства прослеживается определенная зависимость этих параметров от размерности применяемого наполнителя, представленная на рисунке 1.

Таким образом, в результате проведенной работы установлены оптимальные параметры фракционного состава наполнителей для получения полимер-минерального композита с улучшенными прочностными характеристиками. Установлено, что при использовании в полимер-минеральных композитах наполнителей дисперсностью 125 мкм показатели модуля упругости и разрушающего напряжения достигают максимальных значений. При наполнении композита наполнителями с размером частиц в интервале 315-800 мкм происходит существенное (на 20-30 %) снижение этих поќазателей. Установлено, что значительный вклад в получение полимер-минеральные композитов с повышенными механическими характеристиками вносит природа дисперсных наполнителей, а из исследуемых наполнителей наилучшие прочностные характеристики достигаются для композиций с формовочным песком. Результаты исследования доказывают целесообразность введения в полимер-минеральные композиты технологических добавок с целью модифицирования дисперсных

наполнителей, что позволит управлять механическими свойствами полимерминеральных композитов и повышать их прочностные свойства и долговечность.

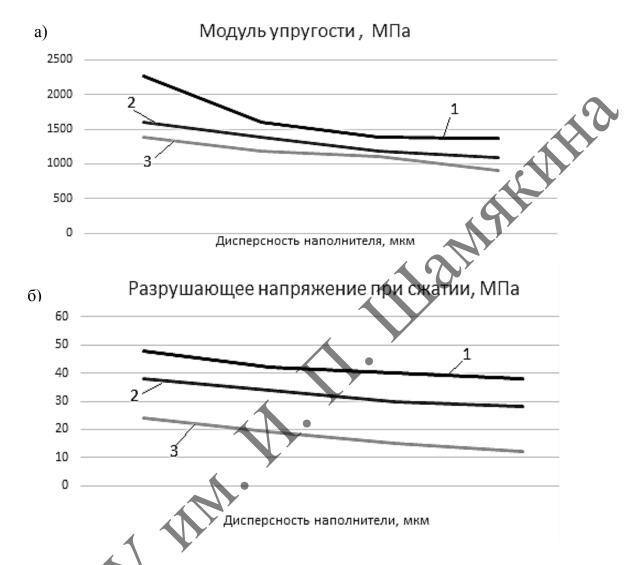


Рисунок 1.— Зависимость прочностных свойств полимер-минеральных композитов от дисперсности минерального наполнителя (а) модуля упругости, (б) разрушающего напряжения при сжатии: 1 – 70 мас. % формовочный песок+30 мас. % ПП; 2 – 70 мас. % дефекат+30 мас. % ПП; 3 – 70 мас. % строительный песок+30 мас. % ПП

ЛИТЕРАТУРА

1. Исследование физико-механических и технологических характеристик композиционных материалов на основе смесей вторичных термопластов / А. А. Тимофеенко [и др.] // Известия Национальной академии наук Беларуси. Сер. физико-технических наук. -2020. - Т. 65, N 2 - С. 162–169.