МАТЭМАТЫКА

УДК 519.240

С.Н. Гуз, М.Д. Юдин

ЗАВИСИМОСТЬ ПУПЫРЧАТОГО РАСПРЕДЕЛЕНИЯ ОТ РАСПОЛОЖЕНИЯ ТОЧЕЧНЫХ НОСИТЕЛЕЙ ПУАССОНОВСКИХ ВЕРОЯТНОСТЕЙ

В работах [1–3] пупырчатое распределение было получено как предельное распределение сумм зависимых случайных двумерных векторов. В [3] даны необходимые и достаточные условия сходимости распределений сумм зависимых векторов к пупырчатым распределениям.

Здесь мы исследуем зависимость предельного пупырчатого распределения сумм зависимых случайных векторов от расположения точечных носителей пуассоновских вероятностей.

Пусть $\{\xi_{ns}\}_{s=1}^n$, $n=\overline{1,\infty}$, — система серий двумерных случайных векторов, определенных при каждом n на общем вероятностном пространстве, координаты которых имеют ограниченные дисперсии, $\xi_{ns}=\left(\xi_{ns}^{(1)},\xi_{ns}^{(2)}\right)$, $x,t\in R^2$, $x=\left(x^{(1)},x^{(2)}\right)$, $t=\left(t_1,t_2\right)$, (\bullet,\bullet) — скалярное произведение.

Центрируем векторы системы $\{\xi_{ns}\}$, положив $\eta_{ns} = \xi_{ns} - M\xi_{ns}$, где $\eta_{ns} = \left(\eta_{ns}^{(1)}, \eta_{ns}^{(2)}\right)$. Введем ковариационную матрицу $B_n = \left\|b_{n(i,j)}\right\|$, где $b_{n(i,j)} = \sum_{0 \le |s-p| \le m_n} M\left(\xi_{ns}^{(i)}\xi_{np}^{(j)}; \left|\xi_{ns}\right| \le \varepsilon, \left|\xi_{np}\right| \le \varepsilon\right)$, i,j=1,2, $\varepsilon>0$, m_n определяется в теореме 1, функцию

$$K_n(x) = \sum_{s=1}^n M(\eta_{ns}^2; \eta_{ns} \le x),$$

где $\eta_{ns} \leq x$ означает $\eta_{ns}^{(i)} \leq x_i$, i=1,2 [4] и медленно меняющуюся функцию h(n) при $n \to \infty$ [5]. Пусть далее $\delta_k - \tau$ —окрестность точки $x_k = \left(x_k^{(1)}, x_k^{(2)}\right), \ x_k \neq 0$ на плоскости.

Мы назовем точку x_k носителем пуассоновской вероятности с весом λ_k , если при любом $\tau>0$, $0<\tau<|x_k|$

$$\lim_{n\to\infty}\sum_{s=1}^n P\{\eta_{ns}\in\delta_k\}=\lambda_k.$$

В [3] показан

Теорема 1. Пусть случайные векторы системы $\{\xi_{ns}\}$ $m_n=m_0 n^{1/8-\rho}$ зависимы, где m_0 – любое постоянное число, $0<\rho\leq 1/8$. Кроме того, найдутся такие H_1 , H_2 и n_0 , что при $n\geq n_0$ будут выполняться условия:

$$\max_{s,i} M \eta_{ns}^{(i)^2} \leq \frac{H_1 h(n)}{n} , \max_{s,r,q,i,j,k} M \left| \eta_{ns}^{(i)} \eta_{nr}^{(j)} \eta_{nq}^{(k)} \right| \leq \frac{H_2 h(n)}{n^{3/2}} ,$$

еде $0 \le |s-r| \le m_0 n^{1/4-\rho}$, $0 < |s-q| \le m_0 n^{1/4-\rho}$. Тогда для того чтобы суммы $S_n = \sum_{s=1}^n \eta_{ns}$ имели при $n \to \infty$ предельное распределение, логарифм характеристической функции (х. ф.) которого

$$\psi(t) = \sum_{k=1}^{\nu} \lambda_k \left(e^{i(t,x_k)} - 1 - i(t,x_k) \right) - \frac{(t,Bt^*)}{2},$$

ВЕСНІК МДПУ

где t^* — вектор-столбец, необходимо и достаточно, чтобы $\lim_{\varepsilon \to 0} \lim_{n \to \infty} \beta_n = B$, точки x_1, x_2, \dots, x_V были носителями пуассоновских вероятностей с весами $\lambda_1, \lambda_2, \dots, \lambda_V$ при $0 < \tau < \min |x_k - x_i|$, $k = \overline{1, V}$, $i = \overline{0, V}$, $x_0 = 0$, u

$$\lim_{n\to\infty}\sum_{s=1}^n \frac{\int x^2 dP \{\eta_{ns} \le x\} = 0,$$

где δ_0 – au – окрестность нуля.

Замечание. Если $\sum_{s=1}^n M \xi_{ns} \to l_0 = \left(l_0^{(1)}, l_0^{(2)} \right)$, то в условиях теоремы 1 суммы $S_n = \sum_{s=1}^n \xi_{ns}$ будут иметь предельные распределения, логарифм х.ф. которого

$$\psi(t) = \sum_{k=1}^{\nu} \lambda_k \left(e^{i(t,x_k)} - 1 - i(t,x_k) \right) - \frac{(t,Bt^*)}{2} + i(t,l_0),$$

что следует из свойств х.ф.

Распределение с х. ф. $e^{\psi(t)}$ – композиция (свертка) ν распределений Пуассона вдоль прямых $x=ax_k$, $a\geq 0$, $k=\overline{1,\nu}$ и нормального распределения с корреляционной матрицей B^{-1} , обратной матрице B. Плотность вероятности этой композиции имеет вид:

$$p(x) = \frac{e^{-\sum_{k=1}^{r} \lambda_k} \sqrt{|B^{-1}|}}{2\pi} \sum_{\substack{m_k = 0 \\ k=1, r}}^{\infty} \left(\prod_{k=1}^{r} \frac{\lambda_k^{m_k}}{m_k!} \right) exp\left\{ -\frac{1}{2} \left(z, B^{-1} z^* \right) \right\}, \tag{1}$$

где $z = x - \left(l_0 - \sum_{k=1}^{\nu} \lambda_k x_k\right) - \sum_{k=1}^{\nu} m_k x_k$, $x = (x_1, x_2)$. Распределения с плотностью (1) мы называем **пунырчатыми** (см. рис. 1–3).

Рассмотрим случай, когда число носителей пуассоновских вероятностей $\nu=2$, $x_1=\left(x_1^{(1)},x_1^{(2)}\right),\ x_2=\left(x_2^{(1)},x_2^{(2)}\right)$. Формула (1) примет вид:

$$p(x) = \frac{e^{-\lambda_1 - \lambda_2} \sqrt{|B^{-1}|}}{2\pi} \sum_{m_1 = 0}^{\infty} \sum_{m_2 = 0}^{\infty} \frac{\lambda_1^{m_1} \lambda_2^{m_2}}{m_1! m_2!} exp\left\{-\frac{1}{2} \left(z, B^{-1} z^*\right)\right\}, \tag{2}$$

The $z = x - (l_0 - \lambda_1 x_1 - \lambda_2 x_2) - m_1 x_1 - m_2 x_2$.

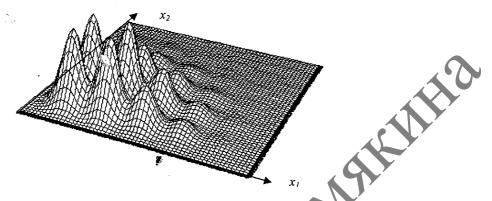
Пусть $B^{-1} = ||c_{ij}||$, i, j = 1, 2. Нами проведено компьютерное исследование зависимости пупырчатого распределения (2) от расположения носителей пуассоновских вероятностей x_1, x_2 .

Оказалось, что поверхность плотности (2) располагается, в основном, между прямыми $x = ax_1$, $x = ax_2$, $a \ge 0$. За пределы угла $\angle x_1ox_2$ заходит незначительная часть вероятности, появляющаяся как результат сглаживания пуассоновских вероятностей нормальным компонентом, который может появиться только как результат зависимости между слагаемыми [6]. При суживании угла между прямыми $x = ax_1$, $x = ax_2$ поверхность плотности (2) сжимается и вытягивается в направлении биссектрисы угла, оставаясь, в основном, в угле $\angle x_1ox_2$. Наконец, когда носители x_1 , x_2 оказываются на одной прямой, поверхность плотности (2) располагается и вытягивается еще более вдоль этой прямой. Это поведение пупырчатого распределения наглядно

MATЭMATЫKA 5

иллюстрируют изображения поверхностей плотности (2) при различных расположениях носителей пуассоновских вероятностей, полученные по разработанной нами компьютерной программе.

На рис. 1 носители пуассоновских вероятностей $x_1 = (1; 0)$, $x_2 = (0; 1)$ расположены на осях координат.



Puc. 1. $x_1 = (1; 0)$, $x_2 = (0; 1)$, $\lambda_1 = \lambda_2 = 1$, $c_{11} = c_{22} = 14$, $c_{12} = c_{21} = 2$, $\ell_0 = \lambda_1 x_1 + \lambda_2 x_2 = (1; 1)$

На рис. 2 носители $x_1 = (2;1)$, $x_2 = (1;2)$ расположены на лучах, выходящих из начала координат и составляющих между собой острый угол.

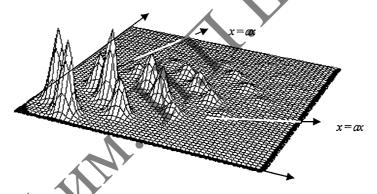
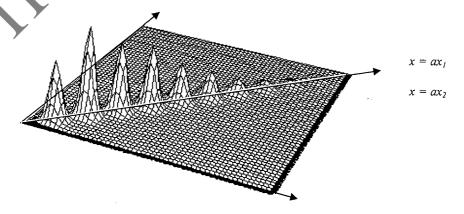


Рис. 2. $x_1 = (2;1)$, $x_2 = (1;2)$, $\lambda_1 = \lambda_2 = 1$, $c_{11} = c_{22} = 14$, $c_{12} = c_{21} = 2$, $\ell_0 = (1;1)$.

На рис. 3 носители $x_1 = (1; 1)$, $x_2 = (2; 2)$ расположены на одной прямой.



Puc. 3. $x_1 = (1; 1)$, $x_2 = (2; 2)$, $\lambda_1 = \lambda_2 = 1$, $c_{11} = c_{22} = 14$, $c_{12} = c_{21} = 2$, $\ell_0 = (1; 1)$.

Замечание. В теореме 1 условие m_n -зависимости мож о заменить на условие выполнения равномерно сильного перемешивания, коэффициент которого $\beta(\tau) = o\left(\tau^{-3-\delta}\right), \ \delta > 0$, но при этом условие $M\eta_{ns}^{(i)2} \le \frac{H_1 h(n)}{n}$ нужно заменить на $M\eta_{ns}^{(i)2} \le \frac{H_1}{n}$ [7].

Литература

- 1. Гуз С.Н., Сергиевич Н.В., Юдин М Д, С влиянии зависимости случайных слагаемых на предельные распределения их сумм // Весці НАН Беларусі. 2002. № 3. С. 30–34.
- 2. Гуз С.Н., Сергиевич Н.В., Юдин М.Д. Сложное пуассоновское распределение в моделировании некоторых деформаций // Веснік Мазырскага дзяржаўнага педагагічнага інстытута. 1999. № 2. С. 26—30.
- 3. Туз С.Н., Сергиевич Н.В., Юдин М.Д. Необходимые и достаточные условия сходимости распределений сумм зависимых векторов к пупырчатым распределениям // Теория вероятностей, математическая статистика и их применение: Материалы научной конференции. Минск, 2004. С. 17–21.
 - 4. Биллинсгли П. Сходимость вероятностных мер. М, 1977.
- 5. Ибрагимов И.А. Линник Ю.В. Независимые и стационарно связанные величины. М., 1965.
- 6. Юдин М.Д. Применение обобщенной формулы Колмогорова к суммам зависимых векторов // Весці НАН Беларусі. Сер. фіз.-мат. навук. 1997. № 3. С. 28–31.
- 7 Yudin M.D. About limiting distributions of the sums of intermixing random vectors with restricted variances // Buletinul Academiei de stiinte a Republicii Moldova. −2002. − № 1 (38). − P. 104–110.

Summary

Limiting distribution of the sums of dependent random vectors is obtained.