ИСПОЛЬЗОВАНИЕ МЕТОДА СРЕДНИХ ВЕЛИЧИН В ПРАКТИКЕ ФИЗИЧЕСКОЙ КУЛЬТУРЫ И СПОРТА

В.А. Горовой

УО «Мозырский государственный педагогический университет имени И.П. Шамякина»

Применяя в исследовании те или иные методы статистики, в конечном итоге экспериментатор получает большую или меньшую совокупность различных числовых показателей, призванных характеризовать изучаемое явление. Однако без систематизации и соответствующей обработки полученных результатов, без углубленного анализа фактов не удается раскрыть заключенную в них информацию и сделать обоснованные выводы. В работе представлена сущностная характеристика метода средних величин как одного из популярных методов статистики в практике физической культуры и спорта.

Традиционные задачи физической культуры и спорта сложились таким образом, что в их основе лежат идеи метода средних величин. Основные этапы метода сводится к следующему: 1) образование вариационных рядов на базе исходной статистической совокупности; 2) определение параметров вариационных рядов, характеризующих совокупность без потерь информации; 3) практической реализации найденных параметров [1].

Приведем пример. У 47 студенток при выполнении контрольного норматива «Поднимание туловища из положения лежа на спине», подсчитано количество повторов за 1 минуту (таблица 1).

Таблица 1

43	41	42	35	42	36	36	41
39	35	40	42	• 39	42	40	35
37	40	37	38	43	38	39	42
43	36	39	39	35	40	38	38
41	37	38	36	40	37	35	40
36	39	43	40	40	41	41	

Полученная группа бессистемных чисел должна быть преобразована в систему, т. е. совокупность связанных между собой показателей, характеристики которой должны дать представление о системе. С этой целью необходимо осуществить ранжирование это операция расположения чисел в порядке или возрастания, или убывания. Для нашего примера ранжирование по возрастанию чисел представлено в таблице 2.

Таблица 2

35	35	35	35	35			
36	36	36	36	36			
37	37	37	37				
38	38	38	38	38			
39	39	39	39	39	39		
40	40	40	40	40	40	40	40
41	41	41	41	41			
42	42	42	42	42			
43	43	43	43				

После ранжирования можно определить, что большая совокупность не поддается анализу, в связи с чем на практике бесполезна.

В дальнейшем необходимо упростить ранжированный материал, подсчитав количество каждого показателя и выстроив в столбцы (таблица 3).

Таблица 3

Xi	n _i
35 36	5
36	
37	5
37 38 39	5
	6
40	6 8 5 5
41	5
42	5
43	4

Полученная группа чисел называется вариационным рядом.

Вариационный ряд — двойной столбец ранжированных чисел, где слева стоит собственно показатель — вариант, а справа — его количество — частота.

Сумма частот называется объемом совокупности, т.е. общим числом исходных данных. Сумма всех частот и представляет собой объем совокупности.

В столбце x_i находятся числа, каждое их которых имеет определенный порядковый номер i.

Вариационные ряды с разными смысловыми значениями, следует обозначать разными буквами, например x_i , y_i , z_i и, д.

Столбец вариационного ряда, содержащий частоты, обозначается n_i и показывает наличие частот, стоящих в соответствии с ранжированием: на первом месте $n_1 = 5$, на втором — $n_2 = 5$ и т. д/ до $n_9 = 4$. Объем совокупности приведенного ряда n = 47 обозначается без индекса одной буквой, так как для ряда характерно единственное число объема совокупности, не имеющее никакого перечисления.

Найденный вариационный ряд, в отличии от группы первоначально измеренных показателей, представляет собой математическую систему (группу чисел, связанных между собой). Следовательно, систему можно представить следующими показателями:

- среднее арифметическое -x;
- дисперсия σ^2 ;
- среднее квадратическое отклонение σ;
- коэффициент вариации v.

Средняя арифметическая величина x — показатель среднего уровня, который определяется следующим образом: 1) умножают каждый вариант x_i на соответствующую частоту; 2) суммируют все полученные произведения; 3) найденную сумму делят на объем совокупности n. Для удобства и наглядности работы с показателями действия, представим таблицу 4.

Таблица 4. – Определение средней арифметической

№	Xi	$\mathbf{n_{i}}$	$\mathbf{x_i} \ \mathbf{n_i}$
п/п			
1	35	5	165
2	36	5	180
3	37	4	148
4	38	5	190
5	39	6	234
6	40	8	320
7	41	5	205
8	42	5	210
9	43	4	172
Всего	-	47	1824

Полученную сумму – 1824, необходимо поделить на объем совокупности – 47 и найдем среднее арифметическое.

$$x = 1824 / 47 = 38,80$$

Следующим показателем вариационного ряда является дисперсия. Она указывает варьирование, т. е. рассеивание исходных данных относительно средней арифметической величины квадрате). Для вычисления дисперсии, необходимо выполнить

следующие действия: 1) определить среднюю арифметическую; 2) из каждого варианта вычесть среднюю арифметическую 4 3) найденную разность возвести в квадрат; 4) полученные квадраты разностей умножить на соответствующие частоты; 5) определить сумму всех произведений; 6) найденную сумму разделить на объем совокупности. Для наглядности составим таблицу 5.

Таблица 5. – Определение дисперсии

№ п/п	Xi	n _i	x _i n _i	$\mathbf{x_i} - \mathbf{x}$	$(\mathbf{x_i} - \mathbf{x})^2$	$(\mathbf{x_i} - \mathbf{x})^2 \mathbf{n_i}$
1	35	5	165	-3,80	14,44	72,2
2	36	5	180	-2,80	7,84	39,2
3	37	4	148	-1,80	3,24	12,96
4	38	5	190	-0,80	0,64	3,2
5	39	6	234	0,20	0,04	0,24
6	40	8	320	1,20	1,44	11,52
7	41	5	205	2,20	4,84	24,2
8	42	5	210	3,20	10,24	51,2
9	43	4	172	4,20	17,64	70,56
Всего	-	47	1824	-	-	285,28

Таким образом, дисперсия равна $\sigma^2 = 285.28 / 47 = 6.06$. Следует отметить, что 5 столбец таблицы имеет ключевое значение, так как его показатели указывают на то, как каждый вариант соотносится со средним значением.

Следующий параметр вариационного ряда — среднее квадратическое отклонение. Для его определения извлекают квадратный корень из дисперсии и учитывают только положительный корень. Так, для нашего ряда среднее квадратическое отклонение составляет: $\sigma = \sqrt{6,06} = 2,46$.

Далее объединяем два основных параметра вариационного ряда - \bar{x} и σ в виде следующего интервала: $\bar{x} \pm \sigma$, который означает, что исходные данные, объединенные в вариационный ряд, могут быть представлены величинами: $\bar{x} \pm \sigma = (38.80 \pm 2.46)$.

Анализируя данный интервал, можно отметить, что исходный массив чисел без значимой погрешности может быть заменен основным средним показателем 38,80, отклонение от которого с недостатком представляется — 2,46, а с избытком + 2,46. Т. е. вся группа чисел может быть представлена интервалом от 36,34 до 41,26. Данный интервал представляет типичные, основные для данной совокупности показатели, а варианты выходящие за эти пределы являются нетипичными. Следовательно, вариант 35 является нехарактерным для данной группы как не достигающий среднего уровня, а варианты 42 и 43 как превосходящие основную группу. Данные группы в сумме составляют 14 студенток (5+5+4), что составляет почти одну треть от всех студенток сдающих контрольный норматив. Таким образом, можно сделать вывод, что данная группа студенток является неоднородной по исходным показателям и требует организационной оценки.

Чтобы определить характер рассеивания используют параметр вариационного ряда — коэффициент вариации v, который рассчитывают по формуле: среднее квадратическое отклонение σ делят на среднее арифметическое и умножают полученную сумму на 100 %. В нашем случае значение коэффициента вариации будет равно 6,34 %.

$$v = \frac{2,46}{38.80} 100 \% = 6,34 \%$$

В биологии считается группа однородной, если коэффициент вариации не превосходит 10–15 %.

В практике физической культуры и спорта не существует такого критерия, однако сам коэффициент вариации часто употребляется и отражает рассеивание группы весьма характерно, например, может указать на квалификацию испытуемого.

Таким образом, можно отметить, что роль средних величин заключается в обобщении, т. е. замене множества индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений. Средняя величина обобщает качественно однородные значения признака и, следовательно, является типической характеристикой признака в данной совокупности.

Литература

1. Начинская, С. В. Спортивная метрология: учеб. пособие для студентов высш. vчеб. заведений / С. В. Начинская. – М.: Академия, 2005. – 240 с.