А.А. ЛИСИЦКАЯ, М.И. ЕФРЕМОВА

МГПУ им. И.П. Шамякина (г. Мозырь, Беларусь)

СВОЙСТВО ИДЕАЛЬНЫХ ПОДГРУПП п-АРНОЙ ГРУППЫ

Особый класс алгебраических систем с перестановочными конгруэнциями образуют парные группы. Напомним [1], что n-арная группа — это алгебра $G = \langle X, () \rangle$ типа $\langle n \rangle$, где $n \geq 2$, если выполняются следующие аксиомы (условия):

1) n-арная операция () на множестве X ассоциативна, т.е. для любой последовательности $x_1^{2n-1} \in X^{2n-1}$ имеет место равенство:

$$\left((x_1^n)x_{n+1}^{2n-1}\right) = \left(x_1^j \left(x_{j+1}^{j+n}\right) x_{j+n+1}^{2n-1}\right), (j=1,2,\dots,n-1);$$

2) для любой последовательности $a_1^{n-1} \in X^n$ каждое из уравнений

$$(xa_1^{n-1}) = a, (a^{n-1}y = a)$$

разрешимо в X.

При переходе от бинарных групп к *п*-арным понятие инвариантной подгруппы допускает различные обобщения (см. монографию Русакова С. А. [1]). Но все они отталкиваются от понятия инвариантной подгруппы как подгруппы, выдерживающей сопряжение своих элементов.

Напомним [1], что подгруппа H n-арной группы G называется инвариантной в G, если для любого элемента $x \in G$ имеет место равенство:

$$[xH^{n-1}] \neq [H^{i-1}xH^{n-1}],$$

где i = 1,2,3,...,n.

В этой статье разрабатывается новый подход к определению инвариантной подгруппы.

Подгруппу H n-арной группы G назовем идеальной в G, если $H = [h]_{H_A}$ для любого $h \in H$. Символом H_A мы обозначаем, следуя [2], конгруэнцию алгебры A, порожденную всеми конгруэнциями π на A такими, что $\pi H = H$.

Свойства идеальной подгруппы описывает следующая теорема.

Теорема. Пусть H и T — подгруппы n-арной группы $A, H \subseteq T$, и H — идеальная подгруппа в A. Тогда H — идеальная подгруппа в T.

Доказательство. Пусть $h_1 \in H$. Так как H — идеальная подгруппа в A, то $h_1 \equiv h(H_A)$, где $h \in H$ и H_A — наибольшая конгруэнция на A со свойством. Следовательно, $h_1 \equiv h(H_A \cap T^2)$ и $(H_A \cap T^2)H = H$. Так как $H_A \cap T^2$ — произвольная конгруэнция на T, то это свойство выполняется и для

Так как $H_A \cap T^2$ — произвольная конгруэнция на T, то это свойство выполняется и для наибольшей конгруэнции H_T на T, т.е. $H_T H = H$. Следовательно, $h_1 \equiv h(H_T)$. Значит, $h_1 \in [h]_{H_T}$. Таким образом, $H \subseteq [h]_{H_T}$.

Пусть $h_1 \in [h]_{H_T}$, где $h \in H$ и H_T — наибольшая конгруэнция на T со свойством $H_TH = H$. Следовательно, $h_1 \equiv h(H_A)$. Так как H — идеальная подгруппа в A, то $h_1 \in H$. Таким образом, $[h]_{H_T} \subseteq H$. Это означает, что $[h]_{H_T} = H$ и H — идеальная подгруппа в T. Теорема доказана.

ЛИТЕРАТУРА

- 1. Русаков, С.А. Алгебраические *n*-арные системы: Силовская теория *n*-арных групп / С.А. Русаков. Минск: Навука і тэхніка, 1992. 264 с.
- 2. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. М.: Наука, 1978. 254 с.